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Structural genomics will yield an immense number of protein three-dimensional structures in
the near future. Automated theoretical methodologies are needed to exploit this information
and are likely to play a pivotal role in drug discovery. Here, we present a fully automated,
efficient docking methodology that does not require any a priori knowledge about the location
of the binding site or function of the protein. The method relies on a multiscale concept where
we deal with a hierarchy of models generated for the potential ligand. The models are created
using the k-means clustering algorithm. The method was tested on seven protein-ligand
complexes. In the largest complex, human immunodeficiency virus reverse transcriptase/
nevirapin, the root mean square deviation value when comparing our results to the crystal
structure was 0.29 Å. We demonstrate on an additional 25 protein-ligand complexes that the
methodology may be applicable to high throughput docking. This work reveals three striking
results. First, a ligand can be docked using a very small number of feature points. Second,
when using a multiscale concept, the number of conformers that require to be generated can
be significantly reduced. Third, fully flexible ligands can be treated as a small set of rigid
k-means clusters.

Introduction

The genome projects will reveal a plethora of new
targets for drug discovery.1 In tandem, structural gen-
omics will provide the three-dimensional (3D) structures
of many target proteins.2 Exploiting this information
may soon become the bottleneck in drug discovery. The
identification of the binding site and its function are not
necessarily straightforward, as was recently shown in
the case of the anthrax toxin.3 Indeed, there is now a
shift of emphasis from genome mapping to the deter-
mination of genome function, hence functional genomics.
If the binding site has no known ligand, such as in the
case of orphan receptors,4 the problem is even more
challenging. As the number of target sites grows, there
is a need for a virtual screening method without any a
priori knowledge about the location of the binding site
or its function.

Docking algorithms are essential in rational drug
design. They differ in the size of the search space, the
binding energy function, and the search strategy. Al-
gorithms such as DOCK,5-7 which is based on a sphere-
matching procedure, or FLEXX,8 which is an incremen-
tal construction method, assume that the binding site
is known and limit the search to its boundaries.
Heuristic methods such as Monte Carlo simulated
annealing,9-11 genetic algorithms,12-16 or the Multiple
Copy Simultaneous Search (MCSS)17 can cover a larger
translational space by minimizing the drug candidate-
protein interaction energy. By starting the simulation
near the binding site, the performance of such algo-
rithms is reasonable. These methods, however, do not
explore the conformational space exhaustively. Utilizing
them without any a priori knowledge about the binding

site might be too computationally expensive and skew
the accuracy of the prediction. Exhaustive, discrete
search methods such as GRID18,19 cover consistently the
entire search space, however, the trade off in computing
time limits the method to small functional groups.

Many virtual screening methods take into account
ligand flexibility. The geometry and the estimated
binding free energy of protein-ligand complexes are
calculated for each conformer. This strategy consumes
vast amounts of computing time and disk space during
high throughput docking (HTD) of millions or even
billions of molecules. Indeed, in our screen saver project,
which includes 3.5 billion molecules (www.chem.ox-
.ac.uk/curecancer.html), the computational demands are
massive (more than 1.5 million distributed computers).

Recently, we showed that by employing the k-means
clustering algorithm it is possible to identify the binding
sites on proteins and the orientation of rigid ligands in
the binding site without any a priori knowledge.20 Here,
we significantly extend the methodology into full flexible
docking.

Materials and Methods
First, we systematically created all of the conformers for

the ligand. The problem of adequate coverage of the confor-
mational space in a reasonable computing time was also
addressed (vide infra). Only the torsion angles were modified,
not the bond lengths or angles. Then, the conformers were
ranked energetically. For this, the all-atom Consistent Valence
Force Field (CVFF)21 model was employed. The energy of a
conformer was computed by eq 1 with the nonbonding 12-6
Lennard-Jones and electrostatic energy terms, where Ai,j is
the repulsion parameter for the two (i, j) atoms, Bi,j is their
attractive polarizability parameter, qi is the partial charge,
ri,j is the distance between atoms, and ε is the dielectric
constant; Vn is the torsional potential barrier height for a
torsion angle Φ, n being the multiplicity and γ the phase factor.
If the energy term exceeded a given threshold, the conformer
was ignored and was not clustered or docked. At the end of
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this stage, we retained the population of lowest energy
conformers.

To locate the binding site, we used a multiscale concept as
described in detail previously,20 where we dealt with a
hierarchy of models generated for the potential ligand. Our
search method is illustrated in Figures 1 and 2. We modeled
each conformer at various scales by employing the k-means
clustering algorithm.20 Each set of conformers was assumed
to be a single ligand. Figure 1 depicts k-means for an
increasing number of feature points (from 1 to 3) on the HIV
reverse transcriptase inhibitor, nevirapine.22 Nevirapine has

one rotatable bond (we ignore the torsion of the methyl moiety)
as shown in Figure 3g. If we systematically create all of the
conformers in 5° intervals and assume all that of the conform-
ers are energetically acceptable, we end up with n ) 72
conformers. In the first model, a single point, we ended up
with n points (O1, O2...On), as shown in Figure 1. Clearly, all
of these points are near identical and can be represented once
instead of n times. The second model was two points separated
by a certain distance (a1, a2...an) that was related to the
dimensions of the “main axis” of the conformer. In the case of
nevirapine, the two feature point representation has an
average distance of 4.6 Å and minimal and maximal values of
4.3 and 4.9 Å, respectively. Docking all of the 72 clusters at
this low level of detail was redundant. Instead, the n ) 72
clusters were purged by a purge criterion to k clusters, where
k e n, and in most cases (see Results), k , n. Instead of
docking n clusters, we docked k clusters. A rather strict purge
criterion of ∆a e 0.6 Å yielded a single representation in the
case of nevirapine, i.e., from n ) 72 clusters, we simplified
the problem to k ) 1 cluster. Indeed, at this level of repre-
sentation and purge criterion, the ligand was treated as one
rigid cluster, although it was flexible. The third model was
defined by two distances (b1, b2...bn) and (c1, c2...cn) separated
by an angle (R1, R2...Rn). It was purged into p presentations
where the purge criterion was two distances and one angle.
The number of three point purged clusters was equal to or
bigger than those for the two points representation, k e p. For
the four feature point representation, the purge criterion was
three distances, two angles, and one dihedral. The process can
be repeated for an increasing number of feature points.

The algorithm built a hierarchy tree of purged clusters as
shown in Figure 2. This figure describes a typical search tree
for a flexible ligand. Each node contains one such purged
cluster and a list of the ensemble of conformers that this
cluster stands for. In this example, two nodes of the purged
clusters for two feature points emerged from the purged
representation of a single point. The algorithm docked both
of them and proceeded with the node of lower energy. This
process was repeated for the third point and so on. In this
search, only a small number of the purged representations
were docked. If we assume that the four point representation
is the last one to be docked, the worst case in this example is
one rigid docking of a one point, two of two points, three of
three points, and five of four points.

The translation space was searched in a manner identical
to that reported previously.20 The only difference was the rapid
tree search for each translation. The search began from the
single point representation. At the end of this stage, the
algorithm moved on the branch toward the two point and

Figure 1. Clustering results (k-means) for an increasing
number of feature points (from 1 to 3) for n conformers. In a
single point representation, all of the conformers’ representa-
tions (O1, O2...On) are identical and can be purged into a single
point. The two point cluster is defined as a line (a1, a2...an)
and the three point cluster as two lines and an angle (b1,
b2...bn), (c1, c2...cn), (R1, R2...Rn). All of these clusters can still
be purged into a much smaller number of n, either k for the
two points or p for the three points.

Figure 2. Purged clusters are sorted to form a search tree.
The search begins from a single point purged cluster. Then it
moves to the lower energy two point purged cluster, three
point, and four. The search is done only on the relevant
branches.
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Figure 3. Seven ligands used as test cases. (a) ε-Amino
capronic acid, (b) biotin, (c) cytidylic acid, (d) L-ascorbic acid,
(e) phosphocholine, (f) L-histidine, and (g) nevirapin. The
rotations are shown with arrows. Methyl moieties are not
rotated.
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docked the purged representation that evolved from this single
point. The process was repeated for the next purged repre-
sentation where the parent of this representation was the one
with the most favorable interaction energy with the binding
site. At the last stage, we employed a rapid, local optimization
to refine the structure using the complete conformer with the
binding site held fixed.

A grid-based method was employed for energy evaluation
between the purged representation and the binding site20 by
precalculating ligand-protein pairwise interaction energies to
form a lookup table. The energy was computed by eq 2 with
the CVFF all-atom model nonbonding terms. Atom i belongs
to a feature point k, and j is a protein grid point.

Results
To test the methodology, a number of protein-ligand

complexes were downloaded from the Protein Data
Bank (PDB).23 The proteins that were chosen cover a
range of sizes (80-926 residues), resolutions (1.6-3.1
Å), and fold families as shown in Table 1 and Figure 4.
These proteins were hydrolase24 (serine protease) (PDB
entry 2pk4, panel a), streptavidin25 (1stp, panel b),
hydrolase26 (endoribonuclease) (1rob, panel c), isomerase27

(1xid, panel d), McPC-60328 (2mcp, panel e), histidine
binding protein29 (1hsl, panel f), and HIV reverse
transcriptase22 (1vrt, panel g). All ligands were flexible,
with the number of rotatable bonds ranging from 1 to 5
and the number of atoms varying from 24 to 34 as
shown in Table 1 and Figure 3.

We assumed the harshest situation where both the
binding sites and the bioactive conformations of the
ligand were unknown. The ligands were deleted, and
an attempt was then made to find the correct docking
site and the bioactive conformation of the ligands in one
simulation. To avoid bias toward the experimental
binding mode, hydrogens were added to the target
proteins without the presence of the bound ligand.
Arginine, lysine, and the N terminus were assumed to
be fully protonated, while the C terminus, aspartic, and
glutamic acids were charged. All histidines were as-
sumed to be monoprotonated on Nε2.

In all test cases, we placed the host protein in a box
of dimensions 3 Å greater in each direction than the
extent of the protein. We employed a molecular grid
with a 0.7 Å resolution and a rotation angle of 5°. A

distance-dependent dielectric constant of ε ) 4r was
used. We restricted the maximal representation of the
ligands to four feature points. All conformers were
systematically generated in 30° intervals. Questions
over the justification of creating the conformers in 30°
intervals are addressed below. If the number of con-
formers exceeded the threshold of 1 000 000, then
1 000 0000 conformers were sampled at random. The
lowest energy population of conformers (up to a thresh-
old of 12 kcal/mol) was clustered. The clusters were
purged using the following thresholds: distance, <1.3
Å; angle, <30°; and dihedral, <30°. Conjugate gradients
local optimization was then employed on the complex
from the starting geometry of the ligand in its predicted
position. The protein’s atoms were held fixed, and the
ligand was allowed to move until a convergence criterion
of 0.01 kcal/Å had been achieved.

The search results are shown in Table 1 and Figures
4 and 5. The initial number of translations varied
according to the size of the protein: from 151 156 for
the smallest one, hydrolase (serine protease) (Figure 4a),
up to 2 666 664 translations for HIV reverse tran-
scriptase (Figure 4g). The root mean square deviation
(RMSD) values when comparing our lowest energy
prediction, i.e., the best-ranked solution (which may not
necessarily be the solution with the lowest RMSD) to
the crystal structure ranged from 0.29 Å (HIV reverse
transcriptase/nevirapin, Figure 5g) to 2.43 Å (hydrolase/
ε-amino capronic acid, Figure 5a) with an average value
of 1.60 Å.

Figure 4 is a snapshot into the end of the third
iteration. Even at this low level of detail, the calculation
clearly converges to the binding site. In hydrolase
(serine protease) (panel a), streptavidin (panel b), hy-
drolase (endoribonuclease) (panel c), and HIV reverse
transcriptase (panel g), all of the remaining translations,
even those with a low energetic score that were not yet
evicted, fall into the binding site. The algorithm clearly
discriminated between the binding site and the other
binding pockets on the surface of the protein. In
isomerase (panel d) and McPC-603 (panel e), the major-
ity of translations, including those with the highest
score (data not shown), fall into the binding site. At the
end of the last iteration in isomerase, all of the five
lowest energy solutions (besides the third solution) fall
into the binding site, while in McPC-603 only the first
and seventh lowest energy solutions fall into the binding

Table 1. Protein Ligand Chosen as Test Cases

protein
PDB
code

resolution
(Å)

no. of
residues

in protein ligand
no. of atoms

in liganda

no. of
rotatable

bonds
initial no. of
translations

RMSDb

between the
lowest energy
prediction and

the crystal
structure

energy gapc

between the 1st
and 5th low energy

predictions

hydrolase
(serine protease)

2pk4 2.25 80 ε-amino capronic
acid

22 5 151 156 2.43 1.42

streptavidin 1stp 2.6 121 biotin 31 5 257 186 1.28 4.16
hydrolase

(endoribonuclease)
1rob 1.6 124 cytidylic acid 33 4 270 396 0.90 7.01

isomerase 1xid 1.70 387 L-ascorbic acid 22 2 960 492 2.12 2.21
McPC-603 2mcp 3.1 442 phosphocholine 24 4 984 528 2.25 0.92
histidine binding

protein
1hsl 1.89 476 L-histidine 20 3 1 236 235 1.92 3.62

HIV-reverse
transcriptase

1vrt 2.2 926 nevirapine 34 1 2 666 664 0.29 0.79

a Including hydrogens. b RMSD is given in Ångstroms and was calculated between all nonhydrogen atoms of the ligands. c Given in
kcal/mol.
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site. The histidine binding protein/L-histidine complex
(panel f) was deposited in the PDB as a dimer where
L-histidine is bound to each of the monomers. We
challenged the methodology and provided as an input
the dimer and not a monomer. Both binding sites have
been identified and ranked as the binding points with
the lowest and equal energy, i.e., the first and second
lowest energy solutions. The fourth and fifth solutions
converged into the first binding pocket. The third
solution did not converge to any of the pockets. This
trend is suggested in Figure 4f, where at the end of the
third iteration most of the feature points already
converge onto the two binding sites.

The fact that from one up to four feature points are
coarse representations of the ligand raises an intriguing
question: Can we create conformers in larger dihedral
angle intervals than 10° and still retain a reasonable
coverage of all conformational space? Table 2 compares
the computing time ratios needed to create conformers
in 10° and 30° intervals. Biotin has (360°/10°)5 )
60 466 176 conformers if we rotate in 10° intervals. If
we change the 10° to 30°, the number of conformers will
be (360°/30°)5 ) 248 832. In other words, we gain
60 466 176/248 832 ) 243 times speedup. In the seven
ligands that we tested, the speedup varies from three
for nevirapin up to 243 times for biotin and ε-amino
capronic acid. We systematically created the conformers

in 10° and 30° for the seven ligands, clustered all the
conformers, and purged the clusters using the same
criteria of distance, <1.3 Å; angle, <30°; and dihedral,
<30° and compared populations within the lowest 12
kcal/mol. Table 2 shows the number of purged clusters
needed to represent all of the conformers of the seven
ligands. At one feature point, it does not matter how
flexible the ligand is or by what increment we rotate
the dihedral angles. In the case of two feature points,
all ligands’ conformations were still represented by one
purged cluster, except biotin, which was represented by
two. In other words, at this level of representation, all
of the conformational space of the ligands was com-
pressed into one rigid line, except biotin, which was
branched into two families. When we increase the level
of detail to three and four feature points, more purged
clusters are needed to represent the available confor-
mational space. In the four point representation, the
purged clusters number ranges from one for nevirapin
up to 22 for biotin. This number is extremely small as
compared to the real number of conformers: 36 and
60 466 176, respectively (when creating the conformers
in 10° intervals). When comparing the number of purged
clusters when working in 10° and 30° intervals, in the
case of one and two feature points, we got an identical
number. This trend is preserved when moving to three
feature points in six out of seven ligands. The only

Figure 4. Seven proteins chosen as test cases. (a) Hydrolase (serine protease), (b) streptavidin, (c) hydrolase (endoribonuclease),
(d) isomerase, (e) McPC-603, (f) histidine binding protein, and (g) HIV reverse transcriptase. The proteins are shown as red
ribbons. The ligand in the crystal structure is shown in blue. The remaining possible translations of the ligand at the end of the
third iteration are shown as green spheres.
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exception, L-histidine, where there are two purged
clusters in the 30° intervals as compared to three in the
case of 10°. When we move to a four feature point
representation, six out of seven ligands show two-thirds
or more of the number of purged clusters when compar-
ing the use of 10° and 30° increments.

We studied the applicability of the methodology to
HTD where the binding site is normally known. We
picked 25 structures at random from the Genetic
Optimization for Ligand Docking (GOLD) data set13 as
shown in Table 3. We employed our algorithm with the
same parameters as the above test cases with two
differences: the conformers were created in 60° inter-
vals and not 30°, and we limited the search to a sphere
with a diameter of 28 Å around the binding site, where
the centroid of the ligand was not allowed to move
outside the boundaries of the sphere. In 18 test cases,
the RMSD values when comparing our lowest energy
prediction, i.e., the best-ranked solution to the crystal
structure, ranged from 0.3 to 2.5 Å. In two test cases,
we received RMSD values between 2.5 and 3.0 Å. In the
remaining five complexes, the RMSD values were higher
than 3.0 Å. The computing time (creation of the energy
grid, generation of the conformers, and the docking
calculations) on a single processor low-end PC (Pentium
III 666Mz, 96Mb RAM laptop) was less than 1 min for
13 test cases, between 1-2 min for seven test cases, and
more than 2 min for the remaining five test cases.

Ideally, one would like to accommodate protein flex-
ibility during the docking process30 instead of assuming
a rigid protein structure. Regrettably, screening each
conformer for a given ligand against each protein
configuration is prohibitively slow to be considered as
an efficient tool for in silico screening.30 This raised the
question as to whether the algorithm can provide a
moderate docking prediction that can be a starting point
for more elaborate calculations such as molecular dy-
namics or Monte Carlo. As a host protein, we utilized
HIV reverse transcriptase22 (PDB entry 1vrt), which is
solved with nevirapine bound. We deleted nevirapine
and tried to dock two other nonnucleoside inhibitors,
1051U91 and R-anilino phenyl acetamide (R-APA). It is
hard to describe the results in RMSD terms since we
utilized a different ligand than in the PDB file. In Figure
6a,b, we compare the bound conformation of nevarpine
to our lowest energy prediction, i.e., the best-ranked
solution of 1051U91 (panel a) and R-APA (panel b).
Visual inspection of the results hints that the prediction
is fairly accurate. We employed the program on the Nu-
clear Pregnane X Receptor-SR12813 complex20,31 where
we utilized the apo structure of the protein. Although
SR12813 binds in three distinct orientations (Figure 6c
shows only one of them), the translation of the our
lowest energy predicted conformation was reasonable
as shown by an overlap of the six-membered rings at
the center of the molecule but the rotation did not
resemble any of the three orientations. We also em-
ployed the algorithm on isomerase32 (PDB entry 1xid).
We removed the ligand, L-ascorbic acid, that appears
in the crystal structure and tried to dock two other
ligands, 1,5-dianhydrosorbitol and D-sorbitol. Similarly
to the HIV reverse transcriptase test case, the lowest
energy predicted conformation of 1,5-dianhydrosorbitol
(Figure 6d) is fairly accurate but the one of D-sorbitol is
inaccurate. Only the second-ranked solution (Figure 6e)
is reasonable.

Discussion

This work presents a robust methodology for the
docking of flexible molecules to proteins with unknown
binding site or function. The approach confirms three
assumptions. First, it is possible to discretize the search
space for both the translation and rotation and the
conformational flexibility of the ligand. Second, we can
search this space at various levels of detail using a
multiscale approach. Third, the result that emerges
from this search is close enough to the optimal position
that by employing a rapid local optimization we can get
a reliable prediction. The algorithm was robust enough
to find the binding site and the geometry of seven
flexible ligands using only two basic assumptions. First,
the protein 3D structure is known; second, we have a
reasonable “cost function”, in this case based on a
molecular mechanics force field.

An advantage of the method is that even if there is
more than one binding site, such as in the case of the
histidine binding protein/L-histidine complex, one simu-
lation is sufficient. It is impressive to see that both
binding sites were identified and were ranked by
identical energies (data not shown). Furthermore, the
ligand itself was docked with a reasonable degree of
accuracy.

Figure 5. Comparison between our results (shown in green)
and the conformation of the ligand at the crystal structure
(shown in blue) for the seven ligands. (a) ε-Amino capronic
acid, (b) biotin, (c) cytidylic acid, (d) L-ascorbic acid, (e)
phosphocholine, (f) L-histidine, and (g) nevirapin.
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There was no correlation between the size of the
protein (reflected by the initial number of translations)
and the accuracy of the prediction. Strikingly, in the
largest complex (HIV reverse transcriptase/nevirapin),
we obtained the best prediction while in the smallest
one (hydrolase/ε-amino capronic acid), we had the high-
est RMSD value. Hence, the quality of the prediction
(but not the complexity of the problem) is not correlated
to the number of initial translations. There was no
correlation between the size of the ligand and the
quality of the prediction as well. Indeed, the ligands
with more than 30 atoms exhibited lower RMSD values
than the ligands that had fewer than 30 atoms. The
resolution of the crystal structure was not correlated
to the quality of the prediction.

There is a weak correlation between the flexibility of
the ligand and the quality of the predictions. Nevirapin,
which was the least flexible ligand, showed the lowest
RMSD value, while ε-amino capronic acid, which has
five rotatable bonds, showed the highest RMSD value.
On the other hand, ligands such as cytidylic acid, with
four rotatable bonds, showed a lower RMSD than
ligands with two rotatable bonds such as L-ascorbic acid.

This implies that there are other factors that also affect
the accuracy of the prediction. Three of them and their
impact on the sensitivity of the results are discussed
below.

First, the level of detail changes when discretizing the
search space. Increasing this level, for example, by
rotating the ligand in smaller increments or using a
higher grid resolution than 0.7 Å is likely to improve
the results. Out of these three parameters, the results
are most sensitive to the angle increments in which the

Table 2. Number of Purged Clusters When Rotating in 10° and 30° Intervals

when rotating in 10° intervals when rotating in 30° intervals

no. of purged clusters for no. of purged clusters for

ligand
rotatable

bonds
no. of

conformers
1

point
2

points
3

points
4

points conformers
1

point
2

points
3

points
4

points speedup

ε-amino capronic
acid

5 60 466 176 1 1 2 4 248 832 1 1 2 3 243

biotin 5 60 466 176 1 2 7 22 248 832 1 2 7 21 243
cytidylic acid 4 1 579 616 1 1 1 4 20 736 1 1 1 3 81
L-ascorbic acid 2 1296 1 1 2 6 144 1 1 2 4 9
phosphocholine 4 331 776 1 1 3 9 20 736 1 1 3 6 16
L-histidine 3 46 656 1 1 3 6 1728 1 1 2 3 27
nevirapine 1 36 1 1 1 1 12 1 1 1 1 3

Table 3. Applicability of Our Algorithm Towards HTD

PDB code

AMSDa between
the lowest energy
prediction and the
crystal structure computing time

1abe 2.5 0 min 27 sec
1acj 2.9 0 min 29 sec
1aco 1.3 0 min 47 sec
1aha 0.3 0 min 52 sec
1azm 0.9 0 min 59 sec
1cil 2.3 4 min 27 sec
1com 1.1 0 min 56 sec
1cps 2.5 5 min 28 sec
1die 1.9 0 min 47 sec
1hsl 2.1 1 min 14 sec
1imb >3.0 1 min 47 sec
1lah 1.2 1 min 31 sec
1mdf >3.0 9 min 36 sec
1nis >3.0 1 min 7 sec
1phd 2.5 0 min 32 sec
1slt 2.4 2 min 5 sec
1tng 2.3 0 min 33 sec
1tni 2.7 3 min 56 sec
1tnl 1.6 0 min 56 sec
2r07 3.0 6 min 20 sec
4cts 2.2 1 min 30 sec
4fab >3.0 1 min 8 sec
4ptb >3.0 9 min 45 sec
6abp 2.2 0 min 27 sec
6rsa 1.5 1 min 13 sec

a RMSD is given in Ångstroms and was calculated between all
nonhydrogen atoms.

Figure 6. Comparison between our results for 1051U91
(shown in gray) and the conformation of the ligand at the
crystal structure (a) nevarpine (shown in black), (b) R-anilino
phenyl acetamide/nevarpine, (c) SR12813 docked to the apo
protein/SR12813 in the bound form, (d) dianhydrosorbitol/L-
ascorbic acid, and (e) D-sorbitol/L-ascorbic acid.
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ligand is rotated. The impact of the rotation is correlated
to the distance from the center of rotation. In the case
of long and large ligands, 5° rotations might be signifi-
cant; consequently, the binder might miss potential
binding pockets and clash with protein’s atoms. On the
other hand, small binders such as benzamidine may be
rotated in larger increments thus saving substantial
computing time. In this work, we showed that 5°
rotations are a reasonable compromise; however, further
work is needed in order to correlate the angle rotation
to the dimensions of the binder. We employed a grid
with a relatively low resolution (0.7 Å). Because the
multiscale approach relies on fuzzy ligand representa-
tions (up to four feature points in this work), increasing
the resolution to 0.4 Å is not a good trade between speed
and accuracy; that is, the improvement of the RMSD
values is not significant, and the computing time needed
to created the grid significantly increases (data not
shown).

Second, the detail level when using a multiscale
approach can affect the results. The number of four
feature points should be taken with an extreme caution,
and further work is needed in order to parameterize and
determine the optimal number of feature points. It is
reasonable that large ligands may need more feature
points. On the other hand, addition of feature points
increases the ligand’s detail level; hence, the angle
intervals that the ligand should be rotated should be
smaller, otherwise many translations that are close to
potentially good locations will not be found due to
clashes with the protein. The sensitivity of the purge
criterion is also crucial to the success of the method.
Employing a loose criterion will lead to a small number
of purged clusters (and nodes on the search tree) and
will significantly reduce the computing time. However,
such representations might be too coarse and conse-
quently skew the results. On the other hand, employing
a strict purge criterion will lead to a large number of
clusters. This detailed presentation of a plethora of
conformers is indeed more accurate. However, it will
increase the computational demands. At first glance,
there seems no clear relation between the angle inter-
vals by which the torsions are rotated when creating
conformers and the purge criterion. However, if we
employ a loose purge criterion, there is no point in
rotating the torsions in very small intervals to generate
an immense number of conformers since all, or the
majority of them, will be purged.

Finally, more accurate energy functions than simple
molecular mechanics nonbonding and torsion terms,
which will consider other parameters such as confor-
mational entropy loss due to the binding, are likely to
improve the predictions. The atomic force field descrip-
tor for a feature point comprises charge and Lennard-
Jones parameters. It is straightforward to increase the
sophistication of the model by adding more descriptors
to be used in the interaction energy evaluation. Clearly,
once the active site location is known, a more expensive
but accurate calculation can be repeated. The aim of the
work was to demonstrate that by employing a simple
and general energy function, such as CVFF, a multi-
scale-based flexible docking methodology is viable.

The use of a multiscale approach enables one ef-
ficiently to break a problem down into a number of small

steps. Dismantling a problem in this manner enables
efficient distribution of computing time so that only the
most fruitful areas are considered in any detail. In most
of the test cases, when the location of the binding site
was known, the entire computing time, which included
the creation of energy grid, conformers, and docking the
ligand was less than a minute on a low end machine.
Indeed, the methodology saves a substantial amount of
computing time in several ways. First, it evicts at a very
early stage all of the unfavorable translations using a
negligible amount of computing time. Second, it uses a
very small number of feature points in order to dock
the seven ligands. In this work, we clustered into four
feature points seven ligands with numbers of atoms
ranging from 24 to 34. Furthermore, most of the
translations were already evicted in 1-3 feature points
in a less expensive computing step.

Our methodology “rigidifies” the ligands. We are able
to compress all of the conformers into a small number
of rigid feature points. This allows us to simplify the
flexibility problem. The most extreme example is nevi-
rapin, which although flexible, was treated as rigid
during the docking. In six out of seven ligands, we
showed that in the two point representation the flex-
ibility problem can be ignored.

In many cases, the target protein was not in its
appropriate bioactive conformation either because it was
in its apo form or the structure was solved when the
protein was bound to a different ligand. Furthermore,
the proteins’ polar hydrogens, such as serine, threonine,
and tyrosine hydroxyls, are likely to change their
positions once binding takes place and misplaced hy-
drogens are likely to skew the results.33 We received
reasonable results however in all of the test cases; the
hydrogens were added to the target protein without
considering the ligand in the crystal structure. There-
fore, the simplistic representation of the ligand that we
utilized is advantageous in that sense. We previously
docked rigid ligands into target proteins taken from
complexes with other substrates.20 Regrettably, when
both the conformation of the binding site and the ligand
are unknown, it is difficult reliably to dock and score
flexible ligands with the current version of the program,
although the algorithm provides a good starting position
for more accurate calculations. We believe that simul-
taneous multiscale representations of both the ligand
and the binding site (if it is known) are likely to improve
the results. Multiple conformations for the binding site
may be efficiently created by a stochastic method
suggested by Glick et al.34 or taken from NMR struc-
tures.

Unlike other docking methods, which normally rotate
the ligand bonds about in 10-15° intervals, we em-
ployed here much larger increments of 30° and 60°. We
have shown that such increments are justified when
using a multiscale approach. In addition, we have shown
a speedup that ranges from three to 243 times. In HTD,
generating the conformers, storing them, and later
evaluating them is one of the bottlenecks. The problem
of highly flexible compounds with a prohibitively large
number of conformers that cannot be evaluated exhaus-
tively is a major one in chemoinformatics.35 In the
anchor-first procedure,36 a rigid core is docked and the
flexible parts are reattached incrementally. There is a
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degree of bias in this method since the geometry of the
conformer in the binding site depends on the placement
of the anchor. This is a limitation if the position of a
ligand is dictated by a small functional group such as
ammonium or carboxylate or if the ligand is aliphatic.
Other chemoinformatics algorithms such as Statistical
Classification of Activities of Molecules for Pharma-
cophore Identification (SCAMPI)37 sample confomations
randomly. Here, we suggest a third option: creating the
conformers in larger intervals and clustering them. The
advantage of our strategy is in many cases, a uniform,
nonrandom, and unbiased coverage of the whole con-
formational space. We believe that this software will
provide a major opportunity in the area of rational drug
discovery.
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